Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(9): 1184-1191, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37191642

RESUMO

Grafting is a common horticultural practice used to confer desirable traits between rootstock and scion, including disease resistance. To investigate graft-conferred resistance against viral diseases a novel heterografting system was developed using Nicotiana benthamiana scions grafted onto different tomato rootstocks. N. benthamiana is normally highly susceptible to tobacco mosaic virus (TMV) infection. However, specific tomato rootstock varieties were found to confer a range of resistance levels to N. benthamiana scions inoculated with TMV. Conferred resistance was associated with delays in virus accumulation and the reduction in virus spread. RNA sequencing analysis showed the enrichment of transcripts associated with disease resistance and plant stress in N. benthamiana scions grafted onto resistance-inducing tomato rootstocks. Genome sequencing of resistance- and nonresistance-conferring rootstocks was used to identify mobile tomato transcripts within N. benthamiana scions. Within resistance-induced N. benthamiana scions, enriched mobile tomato transcripts were predominantly associated with defence, stress, and abscisic acid signalling when compared to similar scions grafted onto nonresistance-inducing rootstock. Combining these findings suggests that graft-induced resistance is modulated by rootstock scion transcriptional responses and rootstock-specific mobile transcripts.


Assuntos
Vírus do Mosaico do Tabaco , RNA Mensageiro/genética , Resistência à Doença/genética , Fenótipo
2.
Methods Mol Biol ; 2653: 153-171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995625

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) technology is a powerful genome editing tool. Recently developed CRISPR-Cas12a system confers several advantages over CRISPR-Cas9, making it ideal for use in plant genome editing and crop improvement. While traditional transformation methods based on plasmid delivery pose concerns associated with transgene integration and off-target effects, CRISPR-Cas12a delivered as ribonucleoproteins (RNPs) can effectively alleviate these potential issues. Here we present a detailed protocol for LbCas12a-mediated genome editing using RNP delivery in Citrus protoplasts. This protocol provides a comprehensive guideline for RNP component preparation, RNP complex assembly and delivery, and editing efficiency assessment.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Plantas/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Linhagem Celular
3.
Nat Nanotechnol ; 18(2): 168-176, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585515

RESUMO

Cotton textiles are ubiquitous in daily life and are also one of the primary mediums for transmitting viruses and bacteria. Conventional approaches to fabricating antiviral and antibacterial textiles generally load functional additives onto the surface of the fabric and/or their microfibres. However, such modifications are susceptible to deterioration after long-term use due to leaching of the additives. Here we show a different method to impregnate copper ions into the cellulose matrix to form a copper ion-textile (Cu-IT), in which the copper ions strongly coordinate with the oxygen-containing polar functional groups (for example, hydroxyl) of the cellulose chains. The Cu-IT displays high antiviral and antibacterial performance against tobacco mosaic virus and influenza A virus, and Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis bacteria due to the antimicrobial properties of copper. Furthermore, the strong coordination bonding of copper ions with the hydroxyl functionalities endows the Cu-IT with excellent air/water retainability and superior mechanical stability, which can meet daily use and resist repeated washing. This method to fabricate Cu-IT is cost-effective, ecofriendly and highly scalable, and this textile appears very promising for use in household products, public facilities and medical settings.


Assuntos
Antivirais , Cobre , Têxteis/microbiologia , Antibacterianos , Celulose
4.
Front Genome Ed ; 4: 780238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174354

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) mediated genome editing is a powerful approach for crop improvement. Traditional transformation methods based on plasmid delivery pose concerns associated with transgene integration and off-target effects. CRISPR delivered as ribonucleoproteins (RNPs) can prevent exogenous DNA integration, minimize off-target effects, and reduce cellular toxicity. Although RNP delivered CRISPR genome editing has been demonstrated in many plant species, optimization strategies that yield high editing efficiencies have not been thoroughly investigated. Using rice and citrus protoplast systems we demonstrated highly efficient genome editing using Cas12a delivered as RNPs. Four Cas12a variants, including LbCas12a, LbCas12a-E795L, AsCas12a, and AsCas12a Ultra, were investigated. Nearly 100% editing efficiency was observed for three out of four target sites by LbCas12a, LbCas12a-E795L, and AsCas12a Ultra, as measured by restriction fragment length polymorphism (RFLP) and verified by next generation sequencing of PCR amplicons. RNP delivery resulted in higher editing efficiencies than plasmid delivery at 32°C and 25°C. LbCas12a and LbCas12a-E795L demonstrated increased editing efficiencies in comparison to AsCas12a and AsCas12a Ultra, especially when used at lower RNP concentrations. In addition, we discovered that a 1:1 Cas12a:crRNA molar ratio is sufficient to achieve efficient genome editing. Nuclear localization signals (NLSs) are essential for efficient RNP-based genome editing. However, the different crRNA modifications tested did not significantly improve genome editing efficiency. Finally, we applied the Cas12a RNP system in citrus protoplasts and obtained similarly high editing efficiencies at the target site. Our study provides a comprehensive guideline for Cas12a-mediated genome editing using RNP delivery in plant cells, setting the foundation for the generation of transgene-free genome edited plants.

5.
Biomacromolecules ; 22(6): 2515-2523, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33886293

RESUMO

The self-assembly system of the rod-shaped tobacco mosaic virus (TMV) has been studied extensively for nanoscale applications. TMV coat protein assembly is modulated by intersubunit carboxylate groups whose electrostatic repulsion limits the assembly of virus rods without incorporating genomic RNA. To engineer assembly control into this system, we reprogrammed intersubunit carboxylate interactions to produce self-assembling coat proteins in the absence of RNA and in response to unique pH and ionic environmental conditions. Specifically, engineering a charge attraction at the intersubunit E50-D77 carboxylate group through a D77K substitution stabilized the coat proteins assembly into virus-like rods. In contrast, the reciprocal E50K modification alone did not confer virus-like rod assembly. However, a combination of R46G/E50K/E97G substitutions enabled virus-like rod assembly. Interestingly, the D77K substitution displays a unique pH-dependent assembly-disassembly profile, while the R46G/E50K/E97G substitutions confer a novel salt concentration dependency for assembly control. In addition, these unique environmentally controlled coat proteins allow for the directed assembly and disassembly of chimeric virus-like rods both in solution and on substrate-attached seed rods. Combined, these findings provide a controllable means to assemble functionally discrete virus-like rods for use in nanotechnology applications.


Assuntos
Nanotubos , Vírus do Mosaico do Tabaco , Proteínas do Capsídeo/genética , RNA Viral , Vírus do Mosaico do Tabaco/genética , Montagem de Vírus
6.
Virology ; 548: 192-199, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32758716

RESUMO

Plum pox virus (PPV) is a worldwide threat to stone fruit production. Its woody perennial hosts provide a dynamic environment for virus evolution over multiple growing seasons. To investigate the impact seasonal host development plays in PPV population structure, next generation sequencing of ribosome associated viral genomes, termed translatome, was used to assess PPV variants derived from phloem or whole leaf tissues over a range of plum leaf and bud developmental stages. Results show that translatome PPV variants occur at proportionately higher levels in bud and newly developing leaf tissues that have low infection levels while more mature tissues with high infection levels display proportionately lower numbers of viral variants. Additional variant analysis identified distinct groups based on population frequency as well as sets of phloem and whole tissue specific variants. Combined, these results indicate PPV population dynamics are impacted by the tissue type and developmental stage of their host.


Assuntos
Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Prunus domestica/virologia , Frutas/virologia , Genoma Viral , Floema/virologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/crescimento & desenvolvimento , Prunus domestica/crescimento & desenvolvimento
7.
Biofabrication ; 12(4): 045017, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32559753

RESUMO

Bioelectronic microdevices, with spatially arranged biosynthetic machinery, can be programmed to convert raw materials to high-value products in a controlled manner. Generic methods for biofunctionalization that enable precise control over biocomponent assembly at the nano and meso scales are necessary to diversify the range and capabilities of these systems. Here, we used tobacco mosaic virus (TMV) derived virus like particles (VLPs) as 3D interfacial scaffolds for the assembly of biosynthetic enzymes onto gold electrodes. The TMV capsids are aligned in a vertical brush configuration by cysteine modifications to the capsid protein and by taking advantage of the well-known gold/cysteine affinity. This alignment enables high surface density and biosynthetic enzyme-enzyme proximity. Enzymes are covalently tethered to the capsid protein of TMV by the N- and C-terminal addition of lysine-rich assembly domains which react with surface exposed glutamine residues on the capsid surfaces; the lysine/glutamine linkages are mediated by a microbial transglutaminase (mTG). We demonstrate flexible mTG-mediated assembly of a three-enzyme biosynthetic pathway that converts S-adenosylmethionine (SAM) to autoinducer-2 (AI-2), a bacterial signal molecule that mediates quorum sensing behavior. We propose that our VLP and mTG based fabrication approach will help in the modular assembly of biological components onto microelectronic devices and that these will find utility in many applications including sensing and lab on chip devices.


Assuntos
Bactérias/metabolismo , Homosserina/análogos & derivados , Vírus do Mosaico do Tabaco/metabolismo , Transglutaminases/metabolismo , Engenharia Genética , Ouro/química , Homocisteína/metabolismo , Homosserina/biossíntese , Lactonas , Redes e Vias Metabólicas , Análise em Microsséries , S-Adenosilmetionina/metabolismo , Vírus do Mosaico do Tabaco/ultraestrutura , Vírion/metabolismo , Vírion/ultraestrutura
8.
Annu Rev Virol ; 7(1): 351-370, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32453971

RESUMO

For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.


Assuntos
Interações entre Hospedeiro e Microrganismos , Floema/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Plantas/virologia , Floema/metabolismo , Transdução de Sinais
9.
Mol Plant Microbe Interact ; 33(1): 66-77, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31347973

RESUMO

Plum pox virus (PPV) is the causative agent of sharka, a devastating disease of stone fruits including peaches, apricots, and plums. PPV infection levels and associated disease symptoms can vary greatly, depending upon the virus strain, host species, or cultivar as well as developmental age of the infected tissues. For example, peaches often exhibit mild symptoms in leaves and fruit while European plums typically display severe chlorotic rings. Systemic virus spread into all host tissues occurs via the phloem, a process that is poorly understood in perennial plant species that undergo a period of dormancy and must annually renew phloem tissues. Currently, little is known about how phloem tissues respond to virus infection. Here, we used translating ribosome affinity purification followed by RNA sequencing to identify phloem- and nonphloem-specific gene responses to PPV infection during leaf development in European plum (Prunus domestica L.). Results showed that, during secondary leaf morphogenesis (4- and 6-week-old leaves), the phloem had a disproportionate response to PPV infection with two- to sixfold more differentially expressed genes (DEGs) in phloem than nonphloem tissues, despite similar levels of viral transcripts. In contrast, in mature 12-week-old leaves, virus transcript levels dropped significantly in phloem tissues but not in nonphloem tissues. This drop in virus transcripts correlated with an 18-fold drop in phloem-specific DEGs. Furthermore, genes associated with defense responses including RNA silencing were spatially coordinated in response to PPV accumulation and were specifically induced in phloem tissues at 4 to 6 weeks. Combined, these findings highlight the temporal and spatial dynamics of leaf tissue responses to virus infection and reveal the importance of phloem responses within a perennial host.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Floema , Vírus Eruptivo da Ameixa , Prunus domestica , Resistência à Doença/genética , Floema/virologia , Folhas de Planta/virologia , Prunus domestica/virologia
10.
Hortic Res ; 6: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729006

RESUMO

Phloem plays a fundamental role in plants by transporting hormones, nutrients, proteins, RNAs, and carbohydrates essential for plant growth and development. However, the identity of the underlying phloem genes and pathways remain enigmatic especially in agriculturally important perennial crops, in part, due to the technical difficulty of phloem sampling. Here, we used two phloem-specific promoters and a translating ribosome affinity purification (TRAP) strategy to characterize the phloem translatome during leaf development at 2, 4, and 6 weeks post vernalization in plum (Prunus domestica L.). Results provide insight into the changing phloem processes that occur during leaf development. These processes included the early activation of DNA replication genes that are likely involved in phloem cell division during leaf expansion, as well as the upregulation of phloem genes associated with sink to source conversion, induction of defense processes, and signaling for reproduction. Combined these results reveal the dynamics of phloem gene expression during leaf development and establish the TRAP system as a powerful tool for studying phloem-specific functions and responses in trees.

11.
Biotechnol J ; 13(12): e1800147, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30288951

RESUMO

Viruses are unique biological agents that infect living host cells through molecular delivery of a genomic cargo. Over the past two decades advancements in genetic engineering and bioconjugation technologies have allowed the unprecedented use of these "unfriendly" biological molecules, as nanoscopic platforms for the advancement of an array of nanotechnology applications. This mini-review focuses on providing a brief summary of key demonstrations leveraging the versatile characteristics of Tobacco mosaic virus (TMV) for molecular assembly and bio-device integration. A comprehensive discussion of genetic and chemical modification strategies along with potential limiting factors that impact the assembly of these macromolecules is presented to provide useful insights for adapting TMV as a potentially universal platform toward developing advanced nanomaterials. Additional discussions on biofabrication techniques developed in parallel to enable immobilization, alignment, and patterning of TMV-based functional particles on solid surfaces will highlight technological innovations that can be widely adapted for creating nanoscopic device components using these engineered biomacromolecules. Further exploitation in the design of molecular specificity and assembly mechanisms and the development of highly controllable and scalable TMV-device integration strategies will expand the library of nanoscale engineering tools that can be used for the further development of virus-based nanotechnology platforms.


Assuntos
Nanotecnologia , Vírus do Mosaico do Tabaco/metabolismo , Biotecnologia , Engenharia Genética , Estrutura Molecular , Nanoestruturas/química
12.
Methods Mol Biol ; 1776: 51-60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869234

RESUMO

Virus-like particles (VLPs) are genome-free protein shells assembled from virus coat proteins (CPs). The uniform and nanoscale structure of VLPs combined with their noninfectious nature have made them ideal candidates for the display of functional peptides. While the vast majority of VLPs are derived from spherical viruses, tobacco mosaic virus (TMV) produces a rod-shaped particle with a hollow central channel. However, under physiological conditions the TMV CP forms only disk-shaped macromolecules. Here, we describe the design, construction, purification, and processing of rod-shaped TMV-VLPs using a simple bacterial expression system. The robust nature of this system allows for the display of functional peptides and molecules on the outer surface of this novel VLP.


Assuntos
Nanotubos/química , Peptídeos/química , Vírus do Mosaico do Tabaco/isolamento & purificação , Proteínas do Capsídeo/química , Substâncias Macromoleculares/química , Nicotiana/virologia
13.
Langmuir ; 34(4): 1725-1732, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301087

RESUMO

In this work, we introduce an electrowetting-assisted 3-D biofabrication process allowing both complete and localized functionalization of bionanoreceptors onto densely arranged 3-D microstructures. The integration of biomaterials with 3-D microdevice components offers exciting opportunities for communities developing miniature bioelectronics with enhanced performance and advanced modes of operation. However, most biological materials are stable only in properly conditioned aqueous solutions, thus the water-repellent properties exhibited by densely arranged micro/nanostructures (widely known as the Cassie-Baxter state) represent a significant challenge to biomaterial integration. Here, we first investigate such potential limitations using cysteine-modified tobacco mosaic virus (TMV1cys) as a model bionanoreceptor and a set of Au-coated Si-micropillar arrays (µPAs) of varying densities. Furthermore, we introduce a novel biofabrication system adopting electrowetting principles for the controlled localization of TMV1cys bionanoreptors on densely arranged µPAs. Contact angle analysis and SEM characterizations provide clear evidence to indicate structural hydrophobicity as a key limiting factor for 3-D biofunctionalization and for electrowetting as an effective method to overcome this limitation. The successful 3-D biofabrication is confirmed using SEM and fluorescence microscopy that show spatially controlled and uniform assemblies of TMV1cys on µPAs. The increased density of TMV1cys per device footprint produces a 7-fold increase in fluorescence intensity attributed to the µPAs when compared to similar assemblies on planar substrates. Combined, this work demonstrates the potential of electrowetting as a unique enabling solution for the controlled and efficient biofabrication of 3-D-patterned micro/nanodomains.

14.
Virology ; 510: 76-89, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28710959

RESUMO

In this study we use vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem associated translatome responses to infection by tobacco mosaic virus (TMV) in systemic hosts Arabidopsis thaliana ecotype Shahdara and Nicotiana benthamiana. Results demonstrate that in both hosts the number of translatome gene alterations that occurred in response to infection is at least four fold higher in phloem specific translatomes than in non-phloem translatomes. This finding indicates that phloem functions as a key responsive tissue to TMV infection. In addition, host comparisons of translatome alterations reveal both similarities and differences in phloem responses to infection, representing both conserved virus induced phloem alterations involved in promoting infection and virus spread as well as host specific alterations that reflect differences in symptom responses. Combined these results suggest phloem tissues play a disproportion role in the mediation and control of host responses to virus infection.


Assuntos
Arabidopsis/virologia , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Floema/virologia , Biossíntese de Proteínas , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
15.
Nanotechnology ; 28(26): 265301, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28524067

RESUMO

This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.


Assuntos
Nanoestruturas/química , Vírus do Mosaico do Tabaco/química , Capacitância Elétrica , Eletrodos , Substâncias Macromoleculares/química , Microfluídica/métodos , Propriedades de Superfície
16.
ACS Appl Mater Interfaces ; 9(10): 8471-8479, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28211673

RESUMO

A capillary microfluidics-integrated sensor system is developed for rapid assembly of bionanoreceptor interfaces on-chip and label-free biosensing. Genetically engineered Tobacco mosaic virus (TMV) virus-like particles (VLPs), displaying thousands copies of identical receptor peptides FLAG-tags, are utilized as nanoceptors for antibody sensing. Controlled and accelerated assembly of VLP receptor layer on impedance sensor has been achieved using capillary action and surface evaporation from an open-channel capillary microfluidic system. VLPs create a dense and localized receptor monolayer on the impedance sensor using only 5 µL of VLP sample solution (0.2 mg/mL) in only 6 min at room temperature. The VLP-functionalized impedance sensor is capable of label-free detection of target antibodies down to 55 pM concentration within 5 min. These results highlight the significant potentials of an integrated microsystem for rapid and controlled receptor-transducer interface creation and the nanoscale VLP-based sensors for fast, accurate, and decentralized pathogen detection.


Assuntos
Microfluídica , Anticorpos , Técnicas Biossensoriais , Impedância Elétrica , Vírus do Mosaico do Tabaco
17.
Proc Natl Acad Sci U S A ; 113(19): E2740-9, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118842

RESUMO

Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread.


Assuntos
Ácidos Indolacéticos/metabolismo , Nicotiana/virologia , Floema/metabolismo , Floema/virologia , Vírus do Mosaico do Tabaco/fisiologia , Carga Viral/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana/metabolismo , Ativação Transcricional/fisiologia , Internalização do Vírus
18.
Biosens Bioelectron ; 81: 401-407, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26995286

RESUMO

This paper presents a comprehensive study of the self-assembly dynamics and the biosensing efficacy of Tobacco mosaic virus-like particle (TMV VLP) sensing probes using an impedimetric microsensor platform. TMV VLPs are high surface area macromolecules with nanorod structures constructed from helical arrangements of thousands of identical coat proteins. Genetically modified TMV VLPs express both surface attachment-promoting cysteine residues and FLAG-tag antibody binding peptides on their coat protein outer surfaces, making them selective biosensing probes with self-assembly capability on sensors. The VLP self-assembly dynamics were studied by the continuous monitoring of impedance changes at 100Hz using interdigitated impedimetric microsensors. Electrical impedance spectroscopy revealed VLP saturation on impedance sensor surface with the coverage of 68% in self-assembly process. The VLP-functionalized impedance sensors responded to 12ng/ml to 1.2µg/ml of target anti-FLAG IgG antibodies in the subsequent enzyme-linked immunosorbent assays (ELISA), and yielded 18-35% total impedance increases, respectively. The detection limit of the target antibody is 9.1ng/ml using the VLP-based impedimetric microsensor. These results highlight the significant potential of genetically modified VLPs as selective nanostructured probes for autonomous sensor functionalization and enhanced biosensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas do Capsídeo/química , Espectroscopia Dielétrica/instrumentação , Ensaio de Imunoadsorção Enzimática/instrumentação , Imunoglobulina G/análise , Nanotubos/química , Vírus do Mosaico do Tabaco/química , Impedância Elétrica , Desenho de Equipamento , Nanotubos/ultraestrutura
19.
Curr Opin Virol ; 17: 25-31, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26656395

RESUMO

Phytohormones play a critical role in nearly every aspect of plant biology, including development and pathogen defense. During virus infection disruption of the plant's normal developmental physiology has often been associated with alterations in phytohormone accumulation and signaling. Only recently has evidence emerged describing mechanistically how viruses modulate phytohormone levels and the impact these modulations have on plant physiology and virus biology. From these studies there is an emerging theme of virus directed manipulation of plant hormone responses to disarm defense responses and reprogram the cellular environment to enhance replication and spread. In this review we examine the impact viruses have on plant hormone systems and the effects of this phytohormone manipulation on virus biology.


Assuntos
Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Vírus de Plantas/metabolismo , Plantas/virologia , Vírus de Plantas/patogenicidade , Plantas/metabolismo , Transdução de Sinais
20.
Virology ; 479-480: 200-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25816763

RESUMO

Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to "farm" such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.


Assuntos
Materiais Biocompatíveis/metabolismo , Biotecnologia/métodos , Nanoestruturas , Vírus de Plantas/genética , Plantas/metabolismo , Plantas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...